98 research outputs found

    A Generic Framework for Blackbox Components in WCET Computation

    Get PDF
    Validation of embedded hard real-time systems requires the computation of the Worst Case Execution Time (WCET). Although these systems make more and more use of Components Off The Shelf (COTS), the current WCET computation methods are usually applied to whole programs: these analysis methods require access to the whole system code, that is incompatible with the use of COTS. In this paper, after discussing the specific cases of the loop bounds estimation and the instruction cache analysis, we show in a generic way how static analysis involved in WCET computation can be pre-computed on COTS in order to obtain component partial results. These partial results can be distributed with the COTS, in order to compute the WCET in the context of a full application. We describe also the information items to include in the partial result, and we propose an XML exchange format to represent these data. Additionally, we show that the partial analysis enables us to reduce the analysis time while introducing very little pessimism

    Normalisation of Loops with Covariant Variables

    Get PDF
    AbstractTemporal property verification is utterly important to ensure safety of critical real-time systems. A main component of this verification is the computation of Worst Case Execution Time (WCET) that requires, in turn, the determination of loop bounds. Although a lot of efforts have been performed in this domain, it remains relatively common cases which are unsolved. For example, to our knowledge, no fast automatic method can cope with the loop bound of a simple binary search look-up. In this paper, we present an approach to solve such loops by using arithmetico-geometric series, that is, loops with arithmetic and/or geometric incrementation with several variables. We have implemented and experimented this approach in our tool oRange

    Big Changes in How Students are Tested

    Get PDF
    For the past decade, school accountability has relied on tests for which the essential format has remained unchanged. Educators are familiar with the yearly testing routine: schools are given curriculum frameworks, teachers use the frameworks to guide instruction, students take one big test at year’s end which relies heavily upon multiple-choice bubble items, and then school leaders wait anxiously to find out whether enough of their students scored at or above proficiency to meet state standards. All this will change with the adoption of Common Core standards. Testing and accountability aren’t going away. Instead, they are developing and expanding in ways that aim to address many of the present shortcomings of state testing routines. Most importantly, these new tests will be computer-based. As such, they will potentially shorten testing time, increase tests’ precision, and provide immediate feedback to students and teachers

    When the worst-case execution time estimation gains from the application semantics

    Get PDF
    International audienceCritical embedded systems are generally composed of repetitive tasks that must meet drastic timing constraints, such as termination deadlines. Providing an upper bound of the worst-case execution time (WCET) of such tasks at design time is thus necessary to prove the correctness of the system. Static timing analysis methods compute safe WCET upper bounds, but at the cost of a potentially large over-approximation. Over-approximation may come from the fact that WCET analysis may consider as potential worst-cases some executions that are actually infeasible, because of the semantics of the program and/or because they correspond to unrealistic inputs. In this paper, we introduce a complete semantic-aware WCET estimation workflow. We introduce some program analysis to find infeasible paths: they can be performed at design, C or binary level, and may take into account information provided by the user. We design an annotation-aware compilation process that enables to trace the infeasible path properties through the program transformations performed by the compilers. Finally, we adapt the WCET estimation tool to take into account the kind of annotations produced by the workflow

    Phase 3 Randomized Trial of Prophylactic Cranial Irradiation With or Without Hippocampus Avoidance in SCLC (NCT01780675)

    Get PDF
    Introduction: To compare neurocognitive functioning in patients with SCLC who received prophylactic cranial irradiation (PCI) with or without hippocampus avoidance (HA). Methods: In a multicenter, randomized phase 3 trial (NCT01780675), patients with SCLC were randomized to standard PCI or HA-PCI of 25 Gy in 10 fractions. Neuropsychological tests were performed at baseline and 4, 8, 12, 18, and 24 months after PCI. The primary end point was total recall on the Hopkins Verbal Learning Test-Revised at 4 months; a decline of at least five points from baseline was considered a failure. Secondary end points included other cognitive outcomes, evaluation of the incidence, location of brain metastases, and overall survival. Results: From April 2013 to March 2018, a total of 168 patients were randomized. The median follow-up time was 26.6 months. In both treatment arms, 70% of the patients had limited disease and baseline characteristics were well balanced. Decline on the Hopkins Verbal Learning Test-Revised total recall score at 4 months was not significantly different between the arms: 29% of patients on PCI and 28% of patients on HA-PCI dropped greater than or equal to five points (p = 1.000). Performance on other cognitive tests measuring memory, executive function, attention, motor function, and processing speed did not change significantly different over time between the groups. The overall survival was not significantly different (p = 0.43). The cumulative incidence of brain metastases at 2 years was 20% (95% confidence interval: 12%-29%) for the PCI arm and 16% (95% confidence interval: 7%-24%) for the HA-PCI arm. Conclusions: This randomized phase 3 trial did not find a lower probability of cognitive decline in patients with SCLC receiving HA-PCI compared with conventional PCI. No increase in brain metastases at 2 years was observed in the HA-PCI arm. (C) 2021 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved

    The WCET Tool Challenge 2011

    Get PDF
    Following the successful WCET Tool Challenges in 2006 and 2008, the third event in this series was organized in 2011, again with support from the ARTIST DESIGN Network of Excellence. Following the practice established in the previous Challenges, the WCET Tool Challenge 2011 (WCC'11) defined two kinds of problems to be solved by the Challenge participants with their tools, WCET problems, which ask for bounds on the execution time, and flow-analysis problems, which ask for bounds on the number of times certain parts of the code can be executed. The benchmarks to be used in WCC'11 were debie1, PapaBench, and an industrial-strength application from the automotive domain provided by Daimler AG. Two default execution platforms were suggested to the participants, the ARM7 as "simple target'' and the MPC5553/5554 as a "complex target,'' but participants were free to use other platforms as well. Ten tools participated in WCC'11: aiT, Astr\'ee, Bound-T, FORTAS, METAMOC, OTAWA, SWEET, TimeWeaver, TuBound and WCA

    PIRCHE-II Is Related to Graft Failure after Kidney Transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor–recipient couples that were transplanted between 1995 and 2005. For these donors–recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04–1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10–1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    PIRCHE-II is related to graft failure after kidney transplantation

    Get PDF
    Individual HLA mismatches may differentially impact graft survival after kidney transplantation. Therefore, there is a need for a reliable tool to define permissible HLA mismatches in kidney transplantation. We previously demonstrated that donor-derived Predicted Indirectly ReCognizable HLA Epitopes presented by recipient HLA class II (PIRCHE-II) play a role in de novo donor-specific HLA antibodies formation after kidney transplantation. In the present Dutch multi-center study, we evaluated the possible association between PIRCHE-II and kidney graft failure in 2,918 donor-recipient couples that were transplanted between 1995 and 2005. For these donors-recipients couples, PIRCHE-II numbers were related to graft survival in univariate and multivariable analyses. Adjusted for confounders, the natural logarithm of PIRCHE-II was associated with a higher risk for graft failure [hazard ratio (HR): 1.13, 95% CI: 1.04-1.23, p = 0.003]. When analyzing a subgroup of patients who had their first transplantation, the HR of graft failure for ln(PIRCHE-II) was higher compared with the overall cohort (HR: 1.22, 95% CI: 1.10-1.34, p < 0.001). PIRCHE-II demonstrated both early and late effects on graft failure in this subgroup. These data suggest that the PIRCHE-II may impact graft survival after kidney transplantation. Inclusion of PIRCHE-II in donor-selection criteria may eventually lead to an improved kidney graft survival

    T-Cell Epitopes Shared Between Immunizing HLA and Donor HLA Associate With Graft Failure After Kidney Transplantation

    Get PDF
    CD4(+) T-helper cells play an important role in alloimmune reactions following transplantation by stimulating humoral as well as cellular responses, which might lead to failure of the allograft. CD4(+) memory T-helper cells from a previous immunizing event can potentially be reactivated by exposure to HLA mismatches that share T-cell epitopes with the initial immunizing HLA. Consequently, reactivity of CD4(+) memory T-helper cells toward T-cell epitopes that are shared between immunizing HLA and donor HLA could increase the risk of alloimmunity following transplantation, thus affecting transplant outcome. In this study, the amount of T-cell epitopes shared between immunizing and donor HLA was used as a surrogate marker to evaluate the effect of donor-reactive CD4(+) memory T-helper cells on the 10-year risk of death-censored kidney graft failure in 190 donor/recipient combinations using the PIRCHE-II algorithm. The T-cell epitopes of the initial theoretical immunizing HLA and the donor HLA were estimated and the number of shared PIRCHE-II epitopes was calculated. We show that the natural logarithm-transformed PIRCHE-II overlap score, or Shared T-cell EPitopes (STEP) score, significantly associates with the 10-year risk of death-censored kidney graft failure, suggesting that the presence of pre-transplant donor-reactive CD4(+) memory T-helper cells might be a strong indicator for the risk of graft failure following kidney transplantation
    • …
    corecore